Supplementary Material for “DiSciPLE: Learning Interpretable Programs for
Scientific Visual Discovery”

A. Additional Results
A.1. Interpretability with DiSciPLE

We qualitatively show an example run of our AGB estimator over a large area wherever ground truth is available. Fig. |
shows such a run of our discovered function near Massachusetts. Due to the interpretable nature of our function, we can
visualize intermediate features used by our method and understand their influence on the final prediction.

A.2. Performance with iterations

To study if 7" = 15 generations of programs are enough to get good solutions, we plot the R2-score with respect to the
number of generations on different problems in Fig. 2. The R2-score is measured on the training set for the best program till
the generation iteration.

We can observe two things. First, the programs improve over generations, proving that zero-shot inference is not enough
to retrieve good programs and evolution with evaluation is necessary. Second, the programs start to converge in terms of
performance by iteration 10, hence 7' > 15 is not needed.

A.3. More qualitative comparisons

In Fig. 3 we show more qualitative examples comparing population density predictions of DiSciPLE and the baselines to the
true population density. Again, It is abundantly clear that DiSciPLE outperforms the baselines in modeling the fine-grained
population changes in unseen regions.

B. DiSciPLE on More Challenging Demography indicators

As mentioned in the main paper we evaluated DiSciPLE on a set of more challenging indicators. Tab. 1 enumerates
demographic indicators with their ACS Community Survey Code (left) and detailed description of their meaning.

In the main paper, we only reported the average performance of these models. In Fig. 4 we also report the performance of
DiSciPLE compared to the baselines on each indicator individually. On many challenging indicators, where DiSciPLE can-
not find a good program such as SE_A02001_002 and SE_A02001_003, the performance of all models is similar to the mean.
However in many other cases such as SE_A00003_002 or SE_A01004_001, DiSciPLE can find a program that is better than
the mean prediction performance.

C. DiSciPLE on Non-visual domains

While in this paper we primarily apply DiSciPLE to a set of visual benchmarks, high-dimensional problems also exist in
other scientific applications. One such example is time-series forecasting. As a proof-of-concept, we apply DiSciPLE on
one such climate-related time-series problem called Contiguous Solar Induced Chlorophyll Fluorescence forecasting.

C.1. Contiguous Solar Induced Chlorophyll Fluorescence (CSIF)

Observation Dataset: CSIF is used to monitor the photosynthetic activity of terrestrial ecosystems. Accurate forecasting of
CSIF is important in many applications such as understanding the growing seasons of crops or seasonal changes to forests
such as the arrival of fall colors [10]. The goal is to forecast CSIF values, by observing past CSIF and environmental values.
Unlike other problems, which could make use of spatial information and thus require satellite images, CSIF forecasting is
done without using satellite images. On the other hand, since this is a forecasting problem, it uses past CSIF values as well as
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Figure 1. Interpretable programs with DiSciPLE. Visualization of intermediate features generated by the program for AGB estimation.
The program allows us to look at intermediate features that the model is looking to make predictions, allowing an expert a deeper under-
standing.

past and current values of environmental variables. The observation variables are an input location and output CSIF values.
The data comes from ERAS climate data store [2].

Metric and Primitives: We use L2 error for each location as the evaluation metric, along with the mathematical and logi-
cal operations. The primitive allows obtaining present environmental variables as well as a time series of past environmental
variables such as minimum and maximum temperature of past months, or soil moisture index (see Appendix [.3).

Baselines: For deep baselines we use LSTMs (small) [3] and time series transformers (large) [9]. For the concept bottle-
neck baseline, we learn a linear classifier over the present environment variable and the mean of past environment variables
along with CSIF.
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Figure 2. Performance of the best programs generated by our method in terms of R2-Score with respect to the number of evolution
generations (iterations). For most of the problems, the programs tend to improve for the first 10 iterations but converge to a good solution
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Table 1. List of 34 demography indicators.

ACS Survey Code

Description

SE_A00003_002
SE_A00003_003
SE_A02001_002
SE_A02001_003
SE_B01001.002
SE_B01001_003
SE_B01001-004
SE_B01001_005
SE_A01004_001
SE_A10008-002
SE_A10008_007
SE_A12001_002
SE_A12001_003
SE_A12001_005
SE_A12001_006
SE_A12003-002
SE_A12003_003
SE_A17002_002
SE_A17002_007
SE_A14001_002
SE_A14001_012
SE_A14006-001
SE_A10011_002
SE_A10011_003
SE_A10060-002
SE_A10060-003
SE_A09005.002
SE_A09005-003
SE_A09005_006
SE_A10030.002
SE_A10030-003
SE_A10030.004
SE_A10066.002
SE_A10066-005

amount of Total Area that is Land Area

amount of Total Area that is Water Area

amount of Total Population that is Male

amount of Total Population that is Female

amount of Total Population that is Under 18 Years

amount of Total Population that is 18 to 34 Years

amount of Total Population that is 35 to 64 Years

amount of Total Population that is 65 and Over

Median Age

amount of Households that are Family Households

amount of Households that are Nonfamily Households

amount of Population 25 Years and Over that is Less than High School

amount of Population 25 Years and Over that is High School Graduate or More (Includes Equivalency)
amount of Population 25 Years and Over that is Bachelor”s Degree or More

amount of Population 25 Years and Over that is Master”’s Degree or More

amount of Civilian Population 16 to 19 Years that is Not High School Graduate, Not Enrolled (Dropped Out)
amount of Civilian Population 16 to 19 Years that is High School Graduate, or Enrolled (In School)
amount of Population 16 Years and Over that is In Labor Force

amount of Population 16 Years and Over that is Not in Labor Force

amount of Households earning less than $60,000

amount of Households earning more than $60,000

Median Household Income (In 2022 Inflation Adjusted Dollars)

amount of Households that are With Earnings

amount of Households that are No Earnings

amount of Occupied Housing Units that are Owner Occupied

amount of Occupied Housing Units that are Renter Occupied

amount of Workers 16 Years and Over that are Car, Truck, or Van

amount of Workers 16 Years and Over that are Public Transportation (Includes Taxicab)
amount of Workers 16 Years and Over that are Walked

amount of Occupied Housing Units that have no vehicle available

amount of Occupied Housing Units that have 1 vehicle available

amount of Occupied Housing Units that have more than 1 vehicle available

amount of Occupied Housing Units that are less than 4-Person Household

amount of Occupied Housing Units that are more than 3-Person Household

C.2. Results on time-series forecasting

We apply DiSciPLE on this CSIF forecasting task. Tab. 2 shows the performance of our method compared to the baseline
on CSIF forecasting on both in-distribution and out-of-distribution data. The function discovered by DiSciPLE is second
best behind a deep model on in-distribution data. DiSciPLE can generalize to OOD data significantly better than the deep
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Figure 3. More examples of predictions from DiSciPLE and other models on population density estimation task on unseen locations. The
maps display population density as the base-10 log of people per square mile.

log1p (population per mi?)

models. Fig. 5 shows the program generated DiSciPLEon this task. This shows that DiSciPLE can be applied to obtain
interpretable and accurate programs for other high-dimensional non-visual problems such as time series forecasting.
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Figure 4. Performance of DiSciPLE and baselines individually on the 34 demography indicators.

D. Prompts for Crossover, Mutation and Others

For crossover, we take two programs and their corresponding scores. We use the following prompt for crossover:



Table 2. Performance of our programs on in-distribution (left) and out-of-distribution (right) observations on CSIF time series forecasting.
DiSciPLE produces better programs (red is best and blue is second best).

In Distribution OO0D
L1 RMSE L1 RMSE
Mean 0.2521 0.3050 | 0.2393 0.3018

Concept Bottleneck  0.1474  0.1835 | 0.1565 0.2029
Deep Model - Small ~ 0.0503  0.0727 | 0.1061 0.1614
Deep Model - Large  0.1487  0.1895 | 0.1815 0.2435

Zero-shot 0.2134 0.2610 | 0.2190 0.2814
Ours 0.0902  0.1260 | 0.0882 0.1256
a CSIF D
4 N [ N

def estimator (locations):
avg_radiation = np.mean (

get_historical_radiation(
locations, 12), axis=1)
avg_temperature = np.mean (

get_historical_max_temperature (
locations, 12), axis=1l)

correlation = corrcoef (avg_radiation,
avg_temperature)

return get_last (get_historical_csif (
locations, 12))
+ (get_present_radiation(locations)
— avg_radiation) * correlation

l

\ J\ J,

Figure 5. Program generated by DiSciPLE for CSIF forecasting task

{{h1}}

This program has a score of {{s(h1)}}.

{{h2}}

This program has a score of {{s(ha)}}.

Can you write a function that gives a higher score? Feel free to combine elements

that worked from both programs. Only give me the code.

And similarly, we use the following prompt for random mutation.

{{n}}

This program has a score of {{s(h)}}.

Can you edit this code to write a better function for the problem?
Only give me code.

For critic, we first extract a list of categories the existing program performs worse on C'. We then list these categories with
the following prompt.

The program you generated is bad when the satellite image contains the following
categories: {{C}}. Generate a program that also works on these categories.

For the “no problem context” ablation we replace the problem objective prompt with a generic prompt.

Write a function that takes in an image and returns a useful map using it.

For the “no common-sense” ablation we replace the API string and the name of the functions. For example,
elementwise max is replaced like this:

def elementwise_max (matrixl, matrix2):

mmn

Compute the element-wise maximum of two matrices.



Parameters:
matrixl (numpy.ndarray): First input matrix.
matrix2 (numpy.ndarray): Second input matrix.

Returns:
numpy.ndarray: Element-wise maximum of the input matrices.

mmn

# replace with a function with arbitrary name and no description.
def deep_shade (inputl, input2):
Parameters:
inputl (numpy.ndarray): First input.
input2 (numpy.ndarray): Second input.
Returns:
numpy.ndarray

mmn

E. More Examples

E.1. Illustration of Simplifcation

For the following program, we show the steps of simplification. Program after crossover

def estimator (im) :
building_mask = segment (im, "residential building")
nr_mask = segment (im, "non-residential buildings")
vegetation_mask = segment (im, "forest")
water_mask = segment (im, "lake")
road_mask = segment (im, "highway")

building_distance = min_pixel_distance_to_mask (building_mask)
nr_distance = min_pixel_distance_to_mask (nr_mask)
vegetation_distance = min_pixel_ distance_to_mask (vegetation_mask)
water_distance = min_pixel_distance_to_mask (water_mask)
road_distance = min_pixel_distance_to_mask (road_mask)

return building distance, nr_distance, vegetation_distance, road_distance

In the first step, as can be seen in Fig. 6 (top-left graph), at the bottom right there is a leaf node that is not a return node.

We remove that node and other leaf nodes recursively resulting in a graph-like top-right.
Using regression weights our method figures out that the leftmost branch or building._distance is not a useful value
to be returned. So in the third step, we remove that and recursively all the leaf nodes.

E.2. More Examples of Crossover

Parent 1

def estimator (location):

images = get_satellite_image (location)
temperature = get_temperature (location)
precipitation = get_precipitation(location)

nightlight = get_nightlight_intensity (location)
return temperature, precipitation, elevation, nightlight
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Figure 6. Process of simplification illustrated over a function.

Parent 2

def estimator (location):

images = get_satellite_image (location)
roads = segment (images, 'roads')
avg_roads = get_average (roads)

avg_nightlight = get_nightlight_intensity(location)
Program after crossover

def estimator (location):

images = get_satellite_image (location)
roads = segment (images, 'roads')
avg_roads = get_average (roads)

avg_nightlight = get_nightlight_intensity(location)

avg_precipitation = get_precipitation(location)

avg_temperature = get_temperature (location)

return (avg_roads * avg_precipitation x avg_nightlight % avg_temperature)

Parent 1

def estimator (location):
images = get_satellite_image (location)
forests = segment (images, 'forests')
avg_forests = get_average (forests)
roads = segment (images, 'roads')
avg_roads = get_average (roads)
elevation = get_elevation (location)
nightlight_intensity = get_nightlight_intensity (location)
return avg_forests, avg_roads, 1 / (1 + elevation), 1 / (1 + nightlight_intensity)



S

Table 3. different LLMs

Test OOD
LLM L2log Lllog L2log Lllog Program Error Percent
Owen2.5-7b-instruct 02950  0.4039 0.4263 0.4716 443
llama-3-8b-instruct 0.2626  0.3842 0.3946 0.4514 56.5
llama-3.1-8b-instruct ~ 0.2771  0.3872 0.3950 0.4518 49.2
llama-3.1-70b-instruct ~ 0.2896  0.3958  0.4223  0.4663 40.2

Deep Model - Large 0.3974 0.4843 0.4460 0.5115 -

Parent 2

def estimator (location):
images = get_satellite_image (location)
poverty_mask = segment (images, 'poverty')
return get_average (poverty_mask)

Program after crossover

def estimator (location):
images = get_satellite_image (location)
poverty_mask = segment (images, 'poverty')
education_mask = segment (images, 'education')
health_mask = segment (images, 'health')
avg_poverty = get_average (poverty_mask)
avg_education = get_average (education_mask)
avg_health = get_average (health_mask)
elevation = get_elevation(location)
nightlight_intensity = get_nightlight_intensity (location)
return avg_poverty, avg_education, avg_health, 1 / (1 + elevation), 1 / (1 +
— nightlight_intensity)

F. Additional Ablations
F.1. Using different LLMs

A key contribution of our work is to leverage the common-sense knowledge in LLMs to improve evolutionary search. So, it
is natural to question whether (a) LLMs (with similar capacity) trained with a different large corpus of text would generate
programs with different levels of reliability and (b) LLMs with larger capacity would produce more reliable programs. We
answer these questions by testing recent LLMs: Qwen-2.5/7b [7], llama-3/8b, llama-3.1/8b, llama-3.1/70b. For ease of
experimentation, we reduce the number of generations to 10 (as results in Appendix A.2 suggests) and the population size to
60. We report the results in Tab. 3. DiSciPLE works robustly with various LLMs and could generate more reliable models
than the Deep Model. While the performance of the programs varies, we do not observe any discernible difference among
the various programs.

Note that the main reason why there isn’t a discernible difference in performance when using different LLMs is that,
several components of DiSciPLE make up for the weaknesses of LLMs. For example, if an LLM is relatively bad at
generating correct code, DiSciPLE rejects those solutions as we also have evaluation in the loop. Similarly, if an LLM
produces verbose code, DiSciPLE has the ability to simplify and reduce the code to useful components. Therefore, as long
as an LLM has good common sense ability and the ability to produce diverse programs, DiSciPLE can support any LLM.



While the final performance of functions discovered by all programs is similar across LLMs, language models with better
coding ability lead to a lower percentage of buggy programs. As a result, the evolutionary search for working programs is
faster for LLMs with less error rate. We also report these error percentages in Tab. 3.

We also tested DiSciPLE with GPT-3.5 and GPT-40-mini, however, we observed that these models care too much about
the objective prompt p,,, and as a result, the generated programs lack diversity. The lack of diversity prevents evolution from
gaining momentum. In future, we plan to perform a better hyperparameter search to enable diverse program generation and
as a result better evolution with GPT models.

F.2. Albation on noisy/unreliable primitives

To investigate how accurate/robust should the underlying black-box model be?, we corroded the OSM maps with a 3x3
convolution and ran DiSciPLE to generate a new program. With the corroded OSM maps, we observe an L2 log error of
0.3713 on the test set — a large degradation in performance compared to clean OSM maps (L2 log error: 0.2626).

G. Experimental Setup

G.1. More details on concept bottleneck baselines

For all the tasks in our benchmark, the bottleneck features are 42 categories of segments obtained from either OSM or
GRAFT and the environmental variable. Moreover, for fairness, we also concatenate the environmental variables used by
DiSciPLEas input to the model. So both DiSciPLEand concept bottleneck baselines get the same information.

For the CSIF task, the concept bottleneck features are the average of past CSIF and environmental variables and the current
environmental variable.

Note that we call this method concept bottleneck due to its similarity to the original work [4] in terms of execution i.e.
linear model on a feature set. However, the way we obtain concepts is much more similar to follow-up works [5, 8].

G.2. More details on deep models baseline

For spatial tasks, we use a ResNet-18 [1] based U-Net [6] (Deep Model-Large). Since our model also needs to be data-
efficient, to prevent overfitting, we also try a smaller backbone of 4-layer fully convolutional network(Deep Model-Small).

We also tried larger ResNets and transformers, however, these models underfit and as a result, fail to generalize robustly
to OOD as well as the in-distribution test set. We posit that this is due to the limited amount of training data (at most 4k
observations).

For fair comparison, we also concatenate the environment variable in the intermediate layer of the deep model, so that
they can make use of the same amount of information as DiSciPLE.

We also, compare a deep model baseline where we concatenate the RGB satellite images with the 42 binary segmentation
masks. This 45-channel input is projected to 3 dimensions and passed through a ResNet and 4-layer models of the same
size. The performance of this model was about the same as the RGB model, therefore we only report the RGB model’s
performance. However, this shows that with the same amount of input information DiSciPLEperforms better than the deep
baselines.

H. More details

H.1. List of 42 land-use concepts
Table 4 show the list of 42 concepts extracted from OpenStreetMaps and also used in GRAFT to get partitions for critic.

tennis courts skate park american football field swimming pool  cemetery pond

golf course roundabout parking lot supermarket school marina
baseball waterfall multi-storey parking garage  airport beach bridge
religious building  residential building  university building office farmland warehouse
forest lake nature reserve park sandy area  soccer field
equestrian center  shooting range non residential buildings commercial area  garden dam
railroad highway river or stream wetland ice-rink coastline

Table 4. List of concepts extracted from OSM and also used via GRAFT for critic data stratification.
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I. Problem Specific Primitive Description

L.1. Primitives and their descriptions for Population Density

def elementwise_max (matrixl1,

def

def

def

def

mmn

matrix?2) :

Compute the element-wise maximum of two matrices.

Parameters:
matrixl
matrix2

Returns:

numpy.ndarray: Element-wise maximum of the input matrices.

mmn

elementwise_min (matrixl,

mmn

(numpy.ndarray) :
(numpy.ndarray) :

First input matrix.
Second input matrix.

matrix?2) :

Compute the element-wise minimum of two matrices.

Parameters:
matrixl
matrix2

Returns:

numpy.ndarray: Element-wise minimum of the input matrices.

mon

elementwise_sum (matrixl,

mmon

(numpy.ndarray) :
(numpy.ndarray) :

First input matrix.
Second input matrix.

matrix?2) :

Compute the element-wise sum of two matrices.

Parameters:
matrixl
matrix2

Returns:

numpy.ndarray: Element-wise sum of the input matrices.

mmn

(numpy.ndarray) :
(numpy.ndarray) :

elementwise_product (matrixl,

mmn

First input matrix.
Second input matrix.

matrix2) :

Compute the element-wise product of two matrices.

Parameters:
matrixl
matrix2

Returns:

numpy.ndarray: Element-wise product of the input matrices.

mon

elementwise_division (matrixl1,

mmn

(numpy.ndarray) :
(numpy .ndarray) :

First input matrix.
Second input matrix.

matrix?2) :

Compute the element-wise division of two matrices.

Parameters:

11
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def

def

def

def

def

matrixl (numpy.ndarray): First input matrix.
matrix2 (numpy.ndarray): Second input matrix.

Returns:
numpy.ndarray: Element-wise division of the input matrices.

mmn

matrix_scalar_multiplication (matrix, scalar):

mmn

Perform matrix scalar multiplication.

Parameters:
matrix (numpy.ndarray): Input matrix.
scalar (int or float): Scalar value.

Returns:
numpy.ndarray: Result of matrix scalar multiplication.

mmn

elementwise_log (matrix) :

mmn

Compute the element-wise logarithm of a matrix.

Parameters:
matrix (numpy.ndarray): Input matrix.

Returns:

numpy.ndarray: Element-wise logarithm of the input matrix.
mmn

elementwise_exponentiate (matrix, base):
mmn

Compute the exponentiation of each element of a matrix with a given base.

Parameters:
matrix (numpy.ndarray): Input matrix.
base (int or float): Base value.

Returns:

numpy.ndarray: Exponentiated matrix.
mrrn

min_pixel_distance_to_mask (mask) :
mmn

Compute the minimum pixel distance from each pixel to a mask.

Parameters:
mask (numpy.ndarray): Binary mask array where 1 represents the mask and 0
< represents the background.

Returns:

numpy.ndarray: Minimum pixel distance to the mask.
mrmn

segment (im, text_prompt="trees"):
mmn

Segments a satellite image based on a text prompt. The text prompt can only take
— concept at a time.

12
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Parameters:
im (numpy.ndarray): An rgb satellite image.
text_prompt (str): a text prompt

Returns:

mask (numpy.ndarray): Binary mask array where 1 represents the mask and 0

— represents the background.
Example:
text_prompt can be but not limited to these:
["tennis", "skate park", "football field", "swimming pool", "cemetery", "multi-storey
garage", "golf", "roundabout", "parking lot", "supermarket", "school", "marina",
"baseball field", "fall", "pond", "airport", "beach", "bridge", "religious
building", "residential building", "warehouse", "office building", "farmland",
"university building", "forest", "lake", "nature reserve", "park", "sand", "soccer
field", "equestrian club", "shooting range", "ice-rink", "commercial area",
"garden", "dam", "railroad", "highway", "river", "wetland", "non-residential
buildings", "coastline"]

L

I.2. Primitives and their descriptions for AGB and Poverty prediction

The evolutionary search uses all the above defined functions, plus the following:

def

def

def

get_satellite_image (location) :
Get the satellite image for a given location.
Parameters:
location (tuple): Tuple containing the latitude and longitude of the location.
Returns:
numpy.ndarray: Satellite image for the location.

Can be used for segmentation ONLY.
mrrn

get_temperature (location) :
mrrn
Get the average annual temperature for a given location.
Parameters:
location (tuple): Tuple containing the latitude and longitude of the location.
Returns:
float: Temperature for the location normalized between 0 and 255.

mmn

get_precipitation (location) :
mrrn
Get the average annual precipitation for a given location.
Parameters:
location (tuple): Tuple containing the latitude and longitude of the location.
Returns:
float: Precipitation for the location between 0 and 255.

mmn

get_elevation (location) :

mmn

13
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def

def

Get the elevation for a given location.
Parameters:

location (tuple): Tuple containing the latitude and longitude of the location.
Returns:

float: Digital Elevation for the location (scaled 0-8000) to 0-255.

mmn

get_nightlight_intensity (location) :
o
Get the average annual nightlight intensity for a given location.
Parameters:
location (tuple): Tuple containing the latitude and longitude of the location.
Returns:
float: Nightlight intensity for the location (between 0 and 1).

mmn

get_average (segmented_image) :

wnn

Get the average pixel value of a segmented image.

Parameters:
segmented_image (numpy.ndarray): Segmented image.

Returns:
float: Average pixel value of the segmented image.

L.3. Primitives and their descriptions for CSIF Forecasting

For CSIF forecast, the API borrows mathematical and logical functions from above. Additionally it has the following to
obtain more environmental variables.

def

def

get_historical_csif (locations, num_months=36) :

mmn

Get historical CSIF (contiguous solar induced chlorophyll fluorescence) time-series
— data for the last given number of months.

Parameters:

locations: a list of locations in a specific format.

num_months (int): Last number of months to get time-series data for.
Returns:

numpy.ndarray: Historical time series data for the given locations. size =

s (len (locations), num months)
mmn

get_historical min_temperature (locations, num_months=36) :

mmn

Get historical minimum temperature time-series data for the last given number of
— months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data for.
Returns:
numpy.ndarray: Historical time series data for the given locations. size =
— (len(locations), num _months)
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def

def

def

def

def

mmon

get_historical_max_temperature (locations, num_months=36) :

mrrn

Get historical maximum temperature time-series data for the last given number of
< months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data for.
Returns:
numpy.ndarray: Historical time series data for the given locations. size =
N (len (locations), num months)

mmn

get_historical_radiation(locations, num_months=36) :
mmn

Get historical solar radiation time-series data for the last given number of months.

Parameters:

locations: a list of locations in a specific format.

num_months (int): Last number of months to get time-series data for.
Returns:

numpy.ndarray: Historical time series data for the given locations. size =

s (len (locations), num months)
mmn

get_historical precipitation(locations, num_months=36) :
mmn

Get historical precipitation time-series data for the last given number of months.

Parameters:

locations: a list of locations in a specific format.

num_months (int): Last number of months to get time-series data for.
Returns:

numpy.ndarray: Historical time series data for the given locations. size =

— (len (locations), num months)
mmn

get_historical_photoperiod(locations, num_months=36) :
mmn

Get historical photoperiod time-series data for the last given number of months.

Parameters:

locations: a list of locations in a specific format.

num_months (int): Last number of months to get time-series data for.
Returns:

numpy.ndarray: Historical time series data for the given locations. size =

N (len (locations), num _months)
mmn

get_historical_swvll (locations, num_months=36) :
mmn
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Get historical soil water content in the first layer time-series data for the last

— given number of months.

Parameters:

locations: a list of locations in a specific format.

num_months (int): Last number of months to get time-series data for.

Returns:

numpy.ndarray: Historical time series data for the given locations.

— (len (locations), num months)
mmn

def get_present_min_temperature (locations) :

mmn

Get present minimum temperature data for the given locations.

Parameters:

locations: a list of locations in a specific format.

Returns:

size

numpy.ndarray: Present minimum temperature data for the given locations.

. (len (locations),)
mmn

def get_present_max_temperature (locations) :

mon

Get present maximum temperature data for the given locations.

Parameters:

locations: a list of locations in a specific format.

Returns:

numpy.ndarray: Present maximum temperature data for the given locations.

o (len (locations),)

mmn

def get_present_radiation(locations):

mmn

Get present solar radiation data for the given locations.

Parameters:

locations: a list of locations in a specific format.

Returns:

numpy.ndarray: Present solar radiation data for the given locations.

— (len(locations),)
mmn

def get_present_precipitation(locations):
mmn

Get present precipitation data for the given locations.

Parameters:

locations: a list of locations in a specific format.

Returns:

numpy.ndarray: Present precipitation data for the given locations.

< (len (locations),)
mmn

def get_present_photoperiod(locations) :
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def

mmon

Get present photoperiod data for the given locations.

Parameters:
locations: a list of locations in a specific format.

Returns:
numpy.ndarray: Present photoperiod data for the given locations. size =
< (len (locations),)

mmn

get_present_swvll (locations) :

mmn

Get present soil water content in the first layer data for the given locations.

Parameters:
locations: a list of locations in a specific format.
Returns:
numpy.ndarray: Present soil water content in the first layer data for the given

— locations. size = (len(locations),)
mmn
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